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Received 10 July 1989 

Abstract. The general form of the angular dependence of the nuclear spin-lattice relaxation 
rate is calculated for relaxation due to the various magnetic interactions between the nuclei 
and conduction electrons in crystalline, metallic materials. The forms of angular dependence 
for each crystal symmetry class are identical with those of the relaxation rate, in the high- 
temperature ( fast-diffusion) limit, due to nuclear-nuclear dipolar coupling, when at least 
one of the interacting nuclear species takes part in translational diffusion. 

1. Introduction 

The magnetic electron-nuclear interaction in metallic conductors gives rise to a fre- 
quency shift (Knight shift) of the nuclear magnetic resonance and also provides a 
contribution to the nuclear spin relaxation rate. Since these arise from the same inter- 
action there is an intimate relation between the square of the Knight shift and the spin- 
lattice relaxation rate, the Korringa relation, which takes a particularly simple form for 
the case of the Fermi contact part of the interaction in cubic metals (Abragam 1961). 

Both the Knight shift and the relaxation rate can depend on the direction of the 
applied static magnetic field with respect to the crystal axes. (Amorphous and liquid 
metals are excluded from the present considerations.) The Knight shift (and the chemical 
shift in non-metals) is a second-order tensor and the orientation of the principal axes of 
the tensor determines the angular dependence of the shift on the magnetic field direction 
(Abragam 1961) and the number of independent components of the tensor depends on 
the crystal symmetry (Buckingham and Malm 1971). The anisotropy of the electron- 
nuclear contribution to the nuclear relaxation rate is more involved than in the case of 
the Knight shift because the relaxation rate involves the squares of matrix elements 
whereas the Knight shift depends linearly on the appropriate matrix elements. 

The anisotropy of the relaxation rate has been considered within the tight-binding 
approximation for the electron states by Obata (1963) for the case of cubic symmetry 
and this work was extended to hexagonal symmetry by Narath (1967). In the present 
work we consider the general problem of the anisotropy of the relexation rate for all 
crystal symmetry classes and derive the results without assuming the tight-binding 
approximation to hold. We do not attempt to calculate the values of the coefficients of 
the angular terms from the electronic structure of the metal. 
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2. Spin-lattice relaxation contributions 

Following Obata (1963), the Hamiltonian of a nucleus of spin Z at the origin interacting 
with an electron with spin s at r ,  in the absence of spin-orbit coupling, is 

H =  yeynh2( l+@-(r)  + Z-@+(r )  + Z/D0(r)) (2.1) 

where the direction of spin quantisation is along the external field, chosen as the z axis, 
and 

Q0(r)  = ( c 1 / r 3 )  (s+ Y;’(Q) - s-  Y:(Q))  + sZ[(8n/3)6(r) + ( c o / r 3 ) Y Y ( Q ) ]  + l z / r3  

c i  = 16n/5 c: = 6 n / 5  (2.2b) 

The terms involving 6(r) are the contact interaction, the terms involving the spherical 
harmonics Y;(!2) are the non-contact dipolar interactions and the terms involving the 
orbital angular momentum operator I are the orbital interactions. The direction LI is the 
direction of the electron site r relative to the magnetic field direction. 

In addition to the above terms, other contributions to the relaxation can arise from 
core polarisation or polarisation of conduction electron s bands lying below the Fermi 
level, and by non-s electrons at the Fermi level. These terms are not included in the 
present analysis since the relaxation due to them is isotropic with respect to the magnetic 
field direction. 

In high magnetic fields the nuclear spin-lattice relaxation rate R I  is independent of 
the magnitude of the nuclear spin I (Abragam (1961), p 362) and therefore it is sufficient 
to consider the case I = f. The relaxation rate is then twice the transition probability per 
unit time of the nucelus having a spin flip from -4 to +d. Such a transition only 
involves the I+-term in equation (2.10) and, therefore, within first-order time-dependent 
perturbation theory, and assuming the high-temperature limit for the Fermi-Dirac 
distribution of occupation of electron states Ik) ,  the expression for RI is (Obata 1963) 

where kB is Boltzmann’s constant, T is the temperature, EF is the Fermi energy and U 

is the electron spin magnetic quantum number. 
The anisotropy of R1 with respect to the orientation of the applied magnetic field 

relative to crystal axes is determined by the matrix elements in equation (2.3). It 
is therefore sufficient in analysing the anisotropy of RI  just to consider the angular 
dependence of the expression 

since the angular dependence arises from the terms depending on r in equation (2.2). 
Evaluating the summations over U and U’ in equation (2.4) using the expression 
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(2.2a) for &(r) yields 

Akv = 1 (k l (4~ /3 )  4 r )  I k‘) I’ + I (kI ( C I  / r3)Yi2(Q 1 I k ’ )  I 2  
+ 4 I ( k  1 (c1 /rg )Y;’(Q ) I k’ ) 1’ + h i ( k  t ( c0 / r3 )  Y!(Q 1 1 k ’ )  1 
+ %I(k/ ( I -  / r 3 )  (k’) I *  
- 2 Re [(kI(4~/3)6(r)  lk’)(kl(co/4r3)Yq(Q)Ik’)*]. (2.5) 

The first term is the contact interaction, the next three terms are the dipolar interaction, 
the fifth term is the orbital interaction and the final term is a cross term between the 
contact and dipolar interactions. Each term in the summation over U and U’ involves 
contributions from only one of s- , s, or both s, and E in equation (2.2a) and so cross 
terms between the contact and orbital terms do not occur. The cross terms between the 
dipolar and orbital terms cancel, so the only cross term in equation (2.5) is between the 
contact and dipolar interactions. 

3. Anisotropy of the contributions 

3.1. Contact interaction 

The contact interaction is isotropic for all crystal symmetries since it only involves the 
value of the Bloch state wavefunctions at the nuclear site. The insertion of the first term 
of equation (2.5) into equation (2.3) leads to the familar expression for the relaxation 
rate (Abragam 1961). 

3.2. Dipolar interaction 

Each of the three dipolar terms in equation (2.5) is of the form 

A m  = a,1(klY;(Q)/r31k‘)12 (3.1) 
where U, are real constants. The spherical harmonics Y ; ( Q )  relative to the magnetic 
field direction may be written in terms of spherical harmonics Y ;  ( a , )  relative to the 
crystal axes as 

‘ 
G(Q) = o ’ =  E - 2  Y;’ (n , )R$;( (p ,  8 )  (3.2) 

where R$k(q ,  0 )  is a rotation matrix (Messiah 1965) and 8, qj are the polar angles of 
the field direction relative to the crystal axes. The expression (3.1) then becomes 

where J:;’, is defined by 

I$., = (kl Y;’(Q,)lk’)*(kl Y ;”(Q, ) l k~ )*  (3.4) 

The quantities J ~ ~ . i  are independent of the field direction and the field dependence is 
contained in the rotation matrices. 

The angular dependence of-the expression (3.3) for the various crystal classes has 
been evaluated by Sholl (1985) (hereinafter referred to as I) in connection with the 
spectral density functions for nuclear spin relaxation due to nuclear-nuclear dipolar 
interactions modulated by translational diffusion. It was shown there that the number 
of independent non-zero elements I,, I depends on the crystal class and varies from 2 for 
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cubic crystals to 15 for triclinic crystals. The angular dependence of equation (3.3) 
was also calculated for each crystal class. These results are also directly applicable to 
equations (3.3) and (3.4). 

The angular dependence of the electron-nuclear dipolar contribution to the relax- 
ation rate (2.3) follows from the angular dependence of the dipolar terms in equation 
(2.5) which is a sum of terms of the form (3.1). The linear combination of the terms for 
different q arising from (3.1) is, as expected, the same as that for the nuclear-nuclear 
relaxation due to translational diffusion of unlike spins (Abragam 1961). Since the 
energy dependence of a nuclear spin flip has been neglected in equation (2.3) as being 
negligible compared with the electron energies Ek, it is the ‘extreme narrowing’ case of 
the general theory that is relevant here. In this case the angular dependence simplifies 
and the angular anisotropy has been evaluated in I. The general forms of the angular 
dependence of the dipolar contribution to R I  for the crystal classes are the following. 

Cubic: A ,  (3.5a) 

Hexagonal, trigonal, tetragonal: A l  + A,  sin2 8 (3.5b) 

Orthorhombic: A ,  + sin2 8(A2 + A3 cos2q)  (3.5c) 

Monoclinic: 

Triclinic: 

A ,  + sin2 O(A, + A 3  cos 2 q  + A 4  sin 29 )  

A l  + sin2 8(A2 + A ,  cos 2 9  + A 4  sin 2q)  

+ sin 28(A5 cos q + A6 sin q) .  

(3.5d) 

(3.5e) 

The parameters Ai can be related to linear combinations of terms contributing to R I  
arising from equations (3.1), (3.3) and (3.4) in a similar way to the results in I. 

3.3. Orbital interaction 

The orbital contribution to Akk‘ (equation (2.5)) is 
A(O! kk’ = ~l (k l l - / r31k ’ )12 .  1 

It is useful in discussing this term to introduce the spherical tensors L; defined by (Narath 
1967) 

L: = 1, (3.7) I il = - -1121 i l  +2 * 
since L: transform under a rotation of axes in the same way as the spherical harmonics 
Y: . Analogously to equation (3.2), the L; therefore satisfy 

1 

q w  = q ’ =  c -1 Y;’(Ql)R$;(q> e> (3.8) 

(3.10) 

Similarly to the case of equations (3.3) and (3.4), the angular dependence of A;? is 
contained in the rotation matrices. 

and Jg) is real. There are The J $  satisfy the relations J $  = (- l)q-Q’J(_q?*_qJ = 
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therefore at most six independent parameters which may be taken as J @ ,  Jiy) real and 
I?),, J?], complex. This is to be compared with 15 independent parameters for JIpd.. 
Using the expressions for R f b ( q ,  8 )  (Messiah 1965), equation (3.9) becomes 

A@ = J g )  + i(J@ - J(T))  sin2 8 + 4 sin2 8 Re(J?], exp(2iq)) 

- (1 /g2)  sin 28  Re(J?], exp(iq)). (3.11) 

The number of independent non-zero J$i depends on the crystal symmetry and the 
results for each crystal class can be evaluated in a similar way to the corresponding 
analysis in I. For the cubic, hexagonal, trigonal and tetragonal ciasses the only non-zero 
parameters are J@ and Jg) and these are equal for the cubic class. For the orthorhombic 
and monoclinic classesJ!?]l is also non-zero and is real for the orthorhombic and complex 
for monoclinic classes. For the triclinic class all six parameters are required. 

The resulting angular dependence of the orbital interaction contribution to the 
relaxation rate is then identical in form to the dipolar case given by equations (3.5). 

3.4. Contact dipolar term 

The only cross term in the relaxation arises from the contact dipolar term in equation 
(2.5), which is 

(3.12) 

The angular dependence of this term arises from the spherical harmonic and using 
equation (3.2) it may be written as 

AB, = -2 Re  (k/(4n/3)6(r)/k’)(k/(co/4r3)Y~(S2)Ik’)*. 

2 

(3.13) 

$1 = -(kl(4~~/3)6(r)1k’)(k/ ( ~ , / 4 r ~ ) Y j ’ ( S 2 ~ )  I,’>* 
where J!!; = Jt)*. Substituting the expressions for the rotation matrices gives 

A @  = 2 Re[Jf)(3 cos2 8 - 1) - G J f )  sin 28  exp(-iq) 

+ V/6Jp) sin2 e exp(-2iq)]. 

(3.14) 

(3.15) 

Since the J t )  are complex there are six independent parameters but only five of these 
contribute to A @  since Im Jp) does not occur. 

The effect of crystal symmetry on the $1 is that all of the terms vanish for cubic 
symmetry, all but Jf) vanish for the hexagonal, trigonal and tetragonal classes, for the 
monoclinic and orthorhombic classes Jp) and Jf) are non-zero with J p )  real for the 
orthorhombic class while all terms are required for the triclinic class. These conditions 
result in the angular dependence of the cross term being of the same form as for the 
dipolar and orbital contributions. as given by equation ( 3 . 9 ,  except for two differences. 
Firstly, the isotropic term A ,  for cubic symmetry iszero for the cross term and, secondly, 
the A ,  + A2 s in2  8 term in equations (3%) to (3.5e) specialises to J f ) (3  cos2 8 - 1) for 
the cross term. 

The electron-nuclear dipolar term is usually expected to be small-compared with the 
orbital term, and often also compared with the contact term. However, the cross term, 
containing a matrix element from each of the contact and dipolar terms, may be larger 
than the dipolar term. Similar considerations also apply to an entirely analogous cross 
term between the core-polarisation and dipolar terms. 



8534 E F W Seymour and C A  Sholl 

4. Discussion 

The results obtained in the previous section are consistent with those of Obata (1963) 
and Narath (1967) for cubic and hexagonal systems within the tight-binding approxi- 
mation for the electron states. The present work is a generalisation of their results to 
arbitrary crystal symmetry and the theory has been developed without any assumptions 
concerning the form of the electron states except for the neglect of spin-orbit coupling. 

The key result is that, for all of the electron-nuclear contributions to a nuclear 
relaxation rate, the anisotropy of the relaxation rate as a function of direction of the 
magnetic field relative to axes fixed in the crystal depends only on the crystal symmetry 
class and the expressions are given by equations ( 3 . 5 ~ )  to (3.5e). These expressions are 
also the same as the ‘extreme narrowing’ or high-temperature limit of nuclear relaxation 
due to time-dependent nuclear-nuclear dipolar coupling between diffusing nuclei. In 
cases where nuclei are being relaxed due to both electron-nuclear interactions and 
nuclear-nuclear dipolar interactions due to diffusive motions simultaneously, it would 
not therefore be possible to separate the two effects on the basis of the angular depen- 
dence of the relaxation rate in the ‘extreme narrowing’ limit. This would not, however, be 
the case at lower temperatures where the angular dependence of the nuclear diffusional 
contribution to the relaxation rate involves additional terms (Sholl 1986). In principle, 
knowledge of the anisotropy of the Knight shift can be of help in separating the con- 
tributions using the Korringa relation, but, without knowledge ofwhich are the dominant 
contributions to the electron-nuclear interactions, the analysis cannot be carried through 
in general. Simultaneous nuclear relaxation due to the electron-nuclear interaction and 
the diffusive nuclear-nuclear interaction is of considerable interest when NMR is used to 
study diffusion in metals (see, for example, Schone et a1 (1986) for a study of ortho- 
rhombic niobium hydride). 

Experimental observations of the anisotropy of R I  in metals are rather sparse, 
certainly compared with the more straightforward observation of anisotropy of the 
Knight shift. The expression (3.5b) is in agreement with the experimental results for 
hexagonal titanium (Narath 1967) and hexagonal scandium (Fradin 1968). Attempts 
to measure the anisotropy in tetragonal tin have so far proved rather inconclusive 
(McLachlan 1968). Relaxation in single crystals of the hexagonal semiconductor tel- 
lurium has been investigated by Koma et a1 (1968), but no measurements of angular 
dependence were reported. 
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